Chào mừng quý vị đến với Website của Nguyễn Kỳ Anh Vũ.
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy đăng ký thành viên tại đây hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.
Tài liệu bồi dưỡng HSG Toán THCS

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Thiều Quang Hùng (trang riêng)
Ngày gửi: 08h:50' 27-06-2011
Dung lượng: 631.0 KB
Số lượt tải: 138
Nguồn:
Người gửi: Thiều Quang Hùng (trang riêng)
Ngày gửi: 08h:50' 27-06-2011
Dung lượng: 631.0 KB
Số lượt tải: 138
Số lượt thích:
0 người
CHUYÊN ĐỀ 1:
Phương trình và hệ phương trình.
I.Giải phương trình bằng cách đặt ẩn phụ thích hợp.
Bài 1:Gpt:
Giải:
Đặt (1).
Ta có: 10.u2 + v2 -11.uv = 0(u-v).(10u-v)=0u=v hoặc 10u=v.
Xét các trường hợp thay vào (1) ta tìm được x một cách dễ dàng.
Bài 2:Gpt: (x2 - 4x+3).(x2 - 6x + 8)=15.
Giải:
Đặt x2 - 5x + 5 = u (1).
Ta có: (x2 - 4x+3).(x2 - 6x + 8)=15
(x-1).(x-3).(x-2).(x-4)-15=0
(x-1).(x-2).(x-3).(x-4)-15=0
(x2-5x+4).(x2-5x+6)-15=0
(u-1).(u+1)-15=0
u2-16=0
u=4.
Thay các giá trị của u vào (1) ta dễ dàng tìm được x.
Bài 3:Gpt:
Giải:PT..
Đặt u = x2 ( u 0) (1).
Ta có:
( u 1).
.
Từ đây ta dễ dàng tìm được u, thay vào (1) ta tìm được x.
Bài 4:Gpt:.
Giải:
Đặt (1).
Có:
Xét các trường hợp thay vào (1) ta dễ dàng tìm được x.
Bài 5:Gpt: (1).
Giải:
Từ (1) suy ra:
(x0)..
Đặt (*) ta có:
y2 - 8y + 16 = 0 suy ra y = 4 thay vào (*) ta dễ dàng tìm được x.
Bài 6:Gpt:
Giải: Điều kiện x > 4 hoặc x < -1.
*Nếu x > 4, (1) trở thành:
Đặt (2) ta có:
y2 + 3y -18 = 0.
Từ đó ta dễ dàng tìm được y,thay vào (2) ta tìm được x.
*Nếu x < -1, (1) trở thành:
Đặt (3) ta có:
y2 - 3y -18 = 0.
Từ đó ta dễ dàng tìm được y,thay vào (3) ta tìm được x.
Bài 7:Gpt:(2x2 - 3x +1).(2x2 + 5x + 1)=9x2 (1).
Giải:
(1) (x0).Chia cả hai vế cho x2 ta được :
4x2 + 4x -20 + = 0.. Đặt y = .(2)
Ta có: y2 + 2y -24 = 0.
Từ đó ta tìm được y,thay vào (2) ta dễ dàng tìm được x.
Bài 8:Gpt:
Giải:PT
Đến đây ta xét từng khoảng ,bài toán trở nên đơn giản.
Bài 9:Gpt: (1 + x + x2)2 = 5.(1 + x2 + x4).
Giải:
Nhận thấy x = 0 không phải là nghiệm của phương trình đã cho, vậy x0.
Chia cả hai vế của phương trình trên cho x2 ta được:
2x2 - x + 1 - . Đặt y = (*). Ta có:
2y2 - y - 3 = 0.Từ đó ta dễ dàng tìm được y, thay vào (*) ta tìm được x.
Bài 10: Gpt: (6-x)4 + (8-x)4 = 16.
Giải:
Đặt 7 - x = y (*).
Ta có: (y-1)4 + (y + 1)4 =162y4 +12 y2 +2 = 162.(y-1).(y+1).(y2+7)=0y =1 hoặc y = -1.
Thay các giá trị của y tìm được ở trên thay vào (*) ta dễ dàng tìm được các giá trị của x.
II.Tìm các nghiệm nguyên (x;y) hoặc (x;y;z) của các phương trình sau:
Bài 1: x2 = y.(y+1).(y+2).(y+3)
Giải:
Đặt y2 + 3y = t.
Ta có: x2 = y.(y+1).(y+2).(y+3) = (y2 + 3y).(y2 + 3y +2) = t2 + 2t.
*Nếu t > 0 thì t2 < x2 = t2 + 2t < (t
Phương trình và hệ phương trình.
I.Giải phương trình bằng cách đặt ẩn phụ thích hợp.
Bài 1:Gpt:
Giải:
Đặt (1).
Ta có: 10.u2 + v2 -11.uv = 0(u-v).(10u-v)=0u=v hoặc 10u=v.
Xét các trường hợp thay vào (1) ta tìm được x một cách dễ dàng.
Bài 2:Gpt: (x2 - 4x+3).(x2 - 6x + 8)=15.
Giải:
Đặt x2 - 5x + 5 = u (1).
Ta có: (x2 - 4x+3).(x2 - 6x + 8)=15
(x-1).(x-3).(x-2).(x-4)-15=0
(x-1).(x-2).(x-3).(x-4)-15=0
(x2-5x+4).(x2-5x+6)-15=0
(u-1).(u+1)-15=0
u2-16=0
u=4.
Thay các giá trị của u vào (1) ta dễ dàng tìm được x.
Bài 3:Gpt:
Giải:PT..
Đặt u = x2 ( u 0) (1).
Ta có:
( u 1).
.
Từ đây ta dễ dàng tìm được u, thay vào (1) ta tìm được x.
Bài 4:Gpt:.
Giải:
Đặt (1).
Có:
Xét các trường hợp thay vào (1) ta dễ dàng tìm được x.
Bài 5:Gpt: (1).
Giải:
Từ (1) suy ra:
(x0)..
Đặt (*) ta có:
y2 - 8y + 16 = 0 suy ra y = 4 thay vào (*) ta dễ dàng tìm được x.
Bài 6:Gpt:
Giải: Điều kiện x > 4 hoặc x < -1.
*Nếu x > 4, (1) trở thành:
Đặt (2) ta có:
y2 + 3y -18 = 0.
Từ đó ta dễ dàng tìm được y,thay vào (2) ta tìm được x.
*Nếu x < -1, (1) trở thành:
Đặt (3) ta có:
y2 - 3y -18 = 0.
Từ đó ta dễ dàng tìm được y,thay vào (3) ta tìm được x.
Bài 7:Gpt:(2x2 - 3x +1).(2x2 + 5x + 1)=9x2 (1).
Giải:
(1) (x0).Chia cả hai vế cho x2 ta được :
4x2 + 4x -20 + = 0.. Đặt y = .(2)
Ta có: y2 + 2y -24 = 0.
Từ đó ta tìm được y,thay vào (2) ta dễ dàng tìm được x.
Bài 8:Gpt:
Giải:PT
Đến đây ta xét từng khoảng ,bài toán trở nên đơn giản.
Bài 9:Gpt: (1 + x + x2)2 = 5.(1 + x2 + x4).
Giải:
Nhận thấy x = 0 không phải là nghiệm của phương trình đã cho, vậy x0.
Chia cả hai vế của phương trình trên cho x2 ta được:
2x2 - x + 1 - . Đặt y = (*). Ta có:
2y2 - y - 3 = 0.Từ đó ta dễ dàng tìm được y, thay vào (*) ta tìm được x.
Bài 10: Gpt: (6-x)4 + (8-x)4 = 16.
Giải:
Đặt 7 - x = y (*).
Ta có: (y-1)4 + (y + 1)4 =162y4 +12 y2 +2 = 162.(y-1).(y+1).(y2+7)=0y =1 hoặc y = -1.
Thay các giá trị của y tìm được ở trên thay vào (*) ta dễ dàng tìm được các giá trị của x.
II.Tìm các nghiệm nguyên (x;y) hoặc (x;y;z) của các phương trình sau:
Bài 1: x2 = y.(y+1).(y+2).(y+3)
Giải:
Đặt y2 + 3y = t.
Ta có: x2 = y.(y+1).(y+2).(y+3) = (y2 + 3y).(y2 + 3y +2) = t2 + 2t.
*Nếu t > 0 thì t2 < x2 = t2 + 2t < (t
 






Các ý kiến mới nhất