Chào mừng quý vị đến với Website của Nguyễn Kỳ Anh Vũ.
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy đăng ký thành viên tại đây hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.
de thi va dap an Long An nam 2009

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Pham Van Vuong
Ngày gửi: 13h:57' 12-07-2009
Dung lượng: 91.5 KB
Số lượt tải: 44
Nguồn:
Người gửi: Pham Van Vuong
Ngày gửi: 13h:57' 12-07-2009
Dung lượng: 91.5 KB
Số lượt tải: 44
Số lượt thích:
0 người
Sở GD và ĐT
Tỉnh Long An
Kì thi tuyển sinh lớp 10 Trung học phổ thông
Năm học 2009-2010
Môn thi: Toán
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Câu 1: (2đ)
Rút gọn biểu thức
a/
b/Giải phương trình: 7x2+8x+1=0
Câu2: (2đ)
Cho biểu thức (với a>0)
a/Rút gọn P.
b/Tìm giá trị nhỏ nhất của P.
Câu 3: (2đ)
Hai người đi xe đạp cùng xuất phát một lúc từ A đến B với vận tốc hơn kém nhau 3km/h. Nên đến B sớm ,mộn hơn kém nhau 30 phút. Tính vận tốc của mỗi người .Biết quàng đường AB dài 30 km.
Câu 4: (3đ)
Cho đường tròn (O) đường kính AB, C là một điểm nằm giữa O và A Đường thẳng qua C vuông góc với AB cắt (O) tại P,Q.Tiếp tuyến tại D trên cung nhỏ BP, cắt PQ ở E; AD cắt PQ tại F .Chứng minh:
a/ Tứ giác BCFD là tứ giác nội tiếp.
b/ED=EF
c/ED2=EP.EQ
Câu 5: (1đ)
Cho b,c là hai số thoả mãn hệ thức:
Chứng minh rằng ít nhất 1 trong hai phương trình sau phải có nghiệm:
x2+bx+c=0 (1) ; x2+cx+b=0 (2)
ĐÁP ÁN :
Câu 1: (2đ)
b/Giải phương trình: 7x2+8x+1=0 (a=7;b=8;c=1)
Ta có a-b+c=0 nên x1=-1;
Câu 1: (2đ)
a/ (với a>0)
b/Tìm giá trị nhỏ nhất của P.
Vậy P có giá trị nhỏ nhất là khi
Câu 3: (2đ)
Gọi x(km/giờ )là vận tốc của người thứ nhất .
Vận tốc của ngưươì thứ hai là x+3 (km/giờ )
Vậy vận tốc của người thứ nhất là 12 km/giờ.
vận tốc của người thứ hai là 15 km/giờ.
Câu 4: (3đ)
a/ Tứ giác BCFD là tứ giác nội tiếp.
(góc nội tiếp chắn nửađường tròn (o))
=>. Vậy Tứ giác BCFD nội tiếp được.
b/ED=EF
Xét tam giác EDF có
(góc có đỉnh nằm trong đường tròn (O)).
(góc tạo bởi tiếp tuyến và dây cung)
Do PQAB => H là trung điểm của PQ( định lý đường kính dây cung)=> A là trung điểm của =>
tam giác EDF cân tại E => ED=EF
c/ED2=EP.EQ
Xét hai tam giác: EDQ;EDP có
chung.
(cùng chắn)
=>EDQ EPD=>
Câu 5: (1đ)
.=> 2(b+c)=bc(1)
x2+bx+c=0 (1)
Có 1=b2-4c
x2+cx+b=0 (2)
Có 2=c2-4b
Cộng 1+2= b2-4c+ c2-4b = b2+ c2-4(b+c)= b2+ c2-2.2(b+c)= b2+ c2-2bc=(b-c) 0.
(thay2(b+c)=bc )
Vậy trong 1;2có một biểu thức dương hay ít nhất 1 trong hai phương trình x2+bx+c=0 (1) ; x2+cx+b=0 (2) phải có nghiệm:
Tỉnh Long An
Kì thi tuyển sinh lớp 10 Trung học phổ thông
Năm học 2009-2010
Môn thi: Toán
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Câu 1: (2đ)
Rút gọn biểu thức
a/
b/Giải phương trình: 7x2+8x+1=0
Câu2: (2đ)
Cho biểu thức (với a>0)
a/Rút gọn P.
b/Tìm giá trị nhỏ nhất của P.
Câu 3: (2đ)
Hai người đi xe đạp cùng xuất phát một lúc từ A đến B với vận tốc hơn kém nhau 3km/h. Nên đến B sớm ,mộn hơn kém nhau 30 phút. Tính vận tốc của mỗi người .Biết quàng đường AB dài 30 km.
Câu 4: (3đ)
Cho đường tròn (O) đường kính AB, C là một điểm nằm giữa O và A Đường thẳng qua C vuông góc với AB cắt (O) tại P,Q.Tiếp tuyến tại D trên cung nhỏ BP, cắt PQ ở E; AD cắt PQ tại F .Chứng minh:
a/ Tứ giác BCFD là tứ giác nội tiếp.
b/ED=EF
c/ED2=EP.EQ
Câu 5: (1đ)
Cho b,c là hai số thoả mãn hệ thức:
Chứng minh rằng ít nhất 1 trong hai phương trình sau phải có nghiệm:
x2+bx+c=0 (1) ; x2+cx+b=0 (2)
ĐÁP ÁN :
Câu 1: (2đ)
b/Giải phương trình: 7x2+8x+1=0 (a=7;b=8;c=1)
Ta có a-b+c=0 nên x1=-1;
Câu 1: (2đ)
a/ (với a>0)
b/Tìm giá trị nhỏ nhất của P.
Vậy P có giá trị nhỏ nhất là khi
Câu 3: (2đ)
Gọi x(km/giờ )là vận tốc của người thứ nhất .
Vận tốc của ngưươì thứ hai là x+3 (km/giờ )
Vậy vận tốc của người thứ nhất là 12 km/giờ.
vận tốc của người thứ hai là 15 km/giờ.
Câu 4: (3đ)
a/ Tứ giác BCFD là tứ giác nội tiếp.
(góc nội tiếp chắn nửađường tròn (o))
=>. Vậy Tứ giác BCFD nội tiếp được.
b/ED=EF
Xét tam giác EDF có
(góc có đỉnh nằm trong đường tròn (O)).
(góc tạo bởi tiếp tuyến và dây cung)
Do PQAB => H là trung điểm của PQ( định lý đường kính dây cung)=> A là trung điểm của =>
tam giác EDF cân tại E => ED=EF
c/ED2=EP.EQ
Xét hai tam giác: EDQ;EDP có
chung.
(cùng chắn)
=>EDQ EPD=>
Câu 5: (1đ)
.=> 2(b+c)=bc(1)
x2+bx+c=0 (1)
Có 1=b2-4c
x2+cx+b=0 (2)
Có 2=c2-4b
Cộng 1+2= b2-4c+ c2-4b = b2+ c2-4(b+c)= b2+ c2-2.2(b+c)= b2+ c2-2bc=(b-c) 0.
(thay2(b+c)=bc )
Vậy trong 1;2có một biểu thức dương hay ít nhất 1 trong hai phương trình x2+bx+c=0 (1) ; x2+cx+b=0 (2) phải có nghiệm:
 






Các ý kiến mới nhất