Chào mừng quý vị đến với Website của Nguyễn Kỳ Anh Vũ.
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy đăng ký thành viên tại đây hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.
BOI DUONG MTBT2

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn: Suu tam
Người gửi: Phạm Bá Phước
Ngày gửi: 20h:28' 16-11-2009
Dung lượng: 660.0 KB
Số lượt tải: 94
Nguồn: Suu tam
Người gửi: Phạm Bá Phước
Ngày gửi: 20h:28' 16-11-2009
Dung lượng: 660.0 KB
Số lượt tải: 94
Số lượt thích:
0 người
Phần I: Các bài toán về đa thức
1. Tính giá trị của biểu thức:
Bài 1: Cho đa thức P(x) = x15 -2x12 + 4x7 - 7x4 + 2x3 - 5x2 + x - 1
Tính P(1,25); P(4,327); P(-5,1289); P
H.Dẫn:
- Lập công thức P(x)
- Tính giá trị của đa thức tại các điểm: dùng chức năng
- Kết quả: P(1,25) = ; P(4,327) =
P(-5,1289) = ; P=
Bài 2: Tính giá trị của các biểu thức sau:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 tại x = 0,53241
Q(x) = x2 + x3 +...+ x8 + x9 + x10 tại x = -2,1345
H.Dẫn:
- áp dụng hằng đẳng thức: an - bn = (a - b)(an-1 + an-2b +...+ abn-2 + bn-1). Ta có:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 =
Từ đó tính P(0,53241) =
Tương tự:
Q(x) = x2 + x3 +...+ x8 + x9 + x10 = x2(1 + x + x2 + x3 +...+ x8) =
Từ đó tính Q(-2,1345) =
Bài 3: Cho đa thức P(x) = x5 + ax4 + bx3 + cx2 + dx + e. Biết P(1) = 1; P(2) = 4; P(3) = 9; P(4) = 16; P(5) = 25. Tính P(6); P(7); P(8); P(9) = ?
H.Dẫn:
Bước 1: Đặt Q(x) = P(x) + H(x) sao cho:
+ Bậc H(x) nhỏ hơn bậc của P(x)
+ Bậc của H(x) nhỏ hơn số giá trị đã biết của P(x), trongbài bậc H(x) nhỏ hơn 5, nghĩa là:
Q(x) = P(x) + a1x4 + b1x3 + c1x2 + d1x + e
Bước 2: Tìm a1, b1, c1, d1, e1 để Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0, tức là:
( a1 = b1 = d1 = e1 = 0; c1 = -1
Vậy ta có: Q(x) = P(x) - x2
Vì x = 1, x = 2, x = 3, x = 4, x = 5 là nghiệm của Q(x), mà bậc của Q(x) bằng 5 có hệ số của x5 bằng 1 nên: Q(x) = P(x) - x2 = (x -1)(x - 2)(x - 3)(x - 4)(x - 5)
( P(x) = (x -1)(x - 2)(x - 3)(x - 4)(x - 5) + x2.
Từ đó tính được: P(6) = ; P(7) = ; P(8) = ; P(9) =
Bài 4: Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 5; P(2) = 7; P(3) = 9; P(4) = 11. Tính P(5); P(6); P(7); P(8); P(9) = ?
H.Dẫn:
- Giải tương tự bài 3, ta có: P(x) = (x -1)(x - 2)(x - 3)(x - 4) + (2x + 3). Từ đó tính được: P(5) = ; P(6) = ; P(7) = ; P(8) = ; P(9) =
Bài 5: Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 1; P(2) = 3; P(3) = 6; P(4) = 10. Tính
H.Dẫn:
- Giải tương tự bài 4, ta có: P(x) = (x -1)(x - 2)(
1. Tính giá trị của biểu thức:
Bài 1: Cho đa thức P(x) = x15 -2x12 + 4x7 - 7x4 + 2x3 - 5x2 + x - 1
Tính P(1,25); P(4,327); P(-5,1289); P
H.Dẫn:
- Lập công thức P(x)
- Tính giá trị của đa thức tại các điểm: dùng chức năng
- Kết quả: P(1,25) = ; P(4,327) =
P(-5,1289) = ; P=
Bài 2: Tính giá trị của các biểu thức sau:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 tại x = 0,53241
Q(x) = x2 + x3 +...+ x8 + x9 + x10 tại x = -2,1345
H.Dẫn:
- áp dụng hằng đẳng thức: an - bn = (a - b)(an-1 + an-2b +...+ abn-2 + bn-1). Ta có:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 =
Từ đó tính P(0,53241) =
Tương tự:
Q(x) = x2 + x3 +...+ x8 + x9 + x10 = x2(1 + x + x2 + x3 +...+ x8) =
Từ đó tính Q(-2,1345) =
Bài 3: Cho đa thức P(x) = x5 + ax4 + bx3 + cx2 + dx + e. Biết P(1) = 1; P(2) = 4; P(3) = 9; P(4) = 16; P(5) = 25. Tính P(6); P(7); P(8); P(9) = ?
H.Dẫn:
Bước 1: Đặt Q(x) = P(x) + H(x) sao cho:
+ Bậc H(x) nhỏ hơn bậc của P(x)
+ Bậc của H(x) nhỏ hơn số giá trị đã biết của P(x), trongbài bậc H(x) nhỏ hơn 5, nghĩa là:
Q(x) = P(x) + a1x4 + b1x3 + c1x2 + d1x + e
Bước 2: Tìm a1, b1, c1, d1, e1 để Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0, tức là:
( a1 = b1 = d1 = e1 = 0; c1 = -1
Vậy ta có: Q(x) = P(x) - x2
Vì x = 1, x = 2, x = 3, x = 4, x = 5 là nghiệm của Q(x), mà bậc của Q(x) bằng 5 có hệ số của x5 bằng 1 nên: Q(x) = P(x) - x2 = (x -1)(x - 2)(x - 3)(x - 4)(x - 5)
( P(x) = (x -1)(x - 2)(x - 3)(x - 4)(x - 5) + x2.
Từ đó tính được: P(6) = ; P(7) = ; P(8) = ; P(9) =
Bài 4: Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 5; P(2) = 7; P(3) = 9; P(4) = 11. Tính P(5); P(6); P(7); P(8); P(9) = ?
H.Dẫn:
- Giải tương tự bài 3, ta có: P(x) = (x -1)(x - 2)(x - 3)(x - 4) + (2x + 3). Từ đó tính được: P(5) = ; P(6) = ; P(7) = ; P(8) = ; P(9) =
Bài 5: Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 1; P(2) = 3; P(3) = 6; P(4) = 10. Tính
H.Dẫn:
- Giải tương tự bài 4, ta có: P(x) = (x -1)(x - 2)(
 
↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT ↓






Các ý kiến mới nhất